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LAW OF LARGE NUMBERS (WEAK) CONVERGENCE ISSUES
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Figure 7.1: How thin tails (Gaussian) and fat tails (1< a <2) converge to the mean.
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Table 7.1: Corresponding n,, or how many for equivalent a-stable distribution. The Gaussian case is the
a = 2. For the case with equivalent tails to the 80/20 one needs 10! more data than the Gaussian.
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kappa and Portfolio “Risk”

Speed of statistical inference (number of
summands) and diversification effects are same.
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Measures of Fat Tailedness

MAIN

- NONPARETAN CLASS (Finite Moments): Kurtosis
- PARETAN CLASS: Tail exponent

Other:

- GINI/concentration measures

- Quantile contribution
- Other
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Fig. 3. A selection of 12 most acute cases among the 43 economic variables.



Preasymptotics for
Summands

There is no such thing as infinite summands in
the real world

n “large” but not asymptotic is not necessarily In
the perceived distributional class



Behavior of sums before the limit

Definition 1. Let X4, ..., X, be i.i.d random variables with
finite mean, that is E(X) < 4+o00. Let S,, = X;+Xo+.. . +X,
be a partial sum. Let MD(n) = E(|S, — E(S,,)|) be the
expected mean absolute deviation from the mean for n sum-
mands. Define the "speed"” of convergence for n summands:

ME(ng+ n) __1
R = S - M E(ng) =n"or n=12,..
(1)
Further, for the default value ng = 1 we write the un-

summed initial value k1 .. as k...



Stable Dist Equiv

e

Remark 1 (Equality for stable distributions). We note that
K(..y = « for all ny and n in the Stable & class.

obtain a factorized o, and since the scale for n summands 1s
1
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Lo

Generalized
Central Limit
a alyca+ 21,52 if X isin ‘P

2 otherwise.
The problem of the preasymptotics for n summands reduces

x

e« What is the property of the distribution for n = 17
« What 1s the property of the distribution for n summands”
o How does k,, — a and at what speed?
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Why MAD not STD

We are interested in class of finite mean not
necessarily finite variance.

MAD more “natural”
MAD more “efficient” except for non Gaussian
MAD only “efficient” asymptotically

hence not for finite “small” n



Some History of STD

RE
Why The [CENSORED] did statistical science pick Mean De- _
viation over STD? Here is the story, with analytical deriva- gl Je00% e ,,
tions not seemingly available in the literature. In Huber - W *ece,.. .
[28]: \ . ¢
There had been a dispute between Eddington and ” GCL o ‘
Fisher, around 1920, about the relative merits of dn i
(mean deviation) and Sn (standard deviation). Fisher | ¢
then pointed out that for exactly normal observations, | ®
Sn is 12% more efficient than dn, and this seemed to al ¢
settle the matter. (My emphasis) I o
Let us rederive and see what Fisher meant. - ¢
| °
Let N be the number of summands: 2l .
®
V(Std) / V(Mad) e
Asymptotic Relative Efficiency = lim oo
ymp Y= NS (]E(Std)z E(Mad)?
1 A A " " | " A A A | " " A " | a
5 10 15 20

Figure 1.8: A simulation of the Relative Efficiency ratio of Stan-
Finalemente, the Asymptotic Relative Efficiency For a Gaus- dard deviation over Mean deviation when injecting a jump size
sian (1+a)o, as a multiple of ¢ the standard deviation.

NT(Y)?
¥ (e -2)
ARE = lim 2 = ~
N—oo mT—2 mT—2




Pareto (a)

* Another way to
“measure” both
CLT & speed of
LLN
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TABLE II1
COMPARING PARETO TO STUDENT T
o Pareto Pareto Pareto Student Student Student
Ko K30 K100 K2 K30 K100

.25 1.171 1.113 1.229 1.208 1.235 1.244
1.5 1.276 1.350 1.369 1.353 1.391 1.413
1.75 1.35 1.444 1.47 1.457 1.517 1.549
2. 1.406 1.516 1.551 1.535 1.613 1.648
225 1.449 1.569 1.612 1.594 1.684 1.718
2.5 1.483 1.614 1.659 1.641 1.744 1.773
275 1512 1.644 1.693 1.679 1.776 1.811
3. 1.535 1.6754 1.719 1.71 1.809 1.841
3.25 1.555 1.695 1.742 1.735 1.833 1.862
3.5 1.572 1.716 1.765 1.757 1.851 1.879
3.75  1.587 1.737 1.778 1.775 1.870 1.891
4. 1.6 1.7468 1.789 1.791 1.874 1.907



Results

Distribution

Mo

Exponential/Gamma

Lognormal (i, o)

Pareto (o) (Constant)

Student Ti(a) (slowly
varying function)

Explicit

No explicit &y, but explicit lower
bound (low or high & or n). Ap-
proximated with Pearson IV for o
in between,

Explicit for k3 (lower bound for all
),

Explicit for kg , &« = 3,

o - . 2



FAT TAILS STATISTICAL PROJECT

TABLE 1
INDEX OF "FAT-TAILEDNESS" FOR NO-SUMMANDS, K1.

Distribution

Student T (er)

Exponential/Gamma

Pareto ()

Normal
switching

a?a w.p p.

(p, o) with
variance

Lognormal (u, o)
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E. A Pareto is not a Stable Distribution

In Uchaikin and Zolotarev [3]:

Mandelbrot called attention to the fact that the use
of the extremal stable distributions (corresponding
to B = 1) to describe empirical principles was
preferable to the use of the Zipf-Pareto distributions
for a number of reasons. It can be seen from
many publications, both theoretical and applied, that
Mandelbrot’s ideas receive more and more wide
recognition of experts. In this way, the hope arises
to confirm empirically established principles in the
framework of mathematical models and, at the same
time, to clear up the mechanism of the formation of
these principles.

These are not the same animals, even for large number of
summands.



Problems In literature

- Tendency to treat all tail exponents >2 as Gaussian
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Fig. 8. Wisual convergence diagnostics for the Kurtosis of the SPS00 over
the past 17000 observations. We compute the kuriosis at different lags for the
raw SPS00 and reshuffied data. While the 4™ norm is not conwvergent for raw
aata, 1t 15 clearly o for the reshulMed senes, We can thus assume that the "t
tailedness” 15 attnbutable to the lemporal strecture of the data, particularly the

clustering of its volatifity, See Tuble 1 for the expected drop ar speed 1/n?
for thin-tailed distributions



Lognormal Bounds

* Alognormal with high o stays lognormal under
summation

* Alognormal with low o behaves like normal

E 4
h‘"]_?“, E hﬂ-‘l,ﬂ- ‘E 2
nlog

| arf ] o? - ~1 :
log (Lr’f\/luh(n—i—ﬁ l) T ltlj:‘,‘) 3 M "l' - 1['} 2
== 2v/2 08

H-J,n —

lim k1, = K],
T — 0 il

HM K14 =2
n—r 00 '
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INfinity Shminfinity

« For a Lognormal, “X large but not infinity” is even
more ambiguous.

e For alognormal, “o low is ambiguous”



5x10%
4x108}
3x10%}
2x10%}

1x10%

:h=

SubExponentiality and the Confusing Lognormal

Recall the story of “two randomly selected people are 4.4 meters tall in total. What is the most likely
distribution?" Clearly, 2.2 meters each. But “two randomly selected people have $30 million net
worth. What is the most likely breakdown?" Here .1 and 29.9. This is another way to express the
“basin” differences.

The Lognormal is again ambiguous. Take the ratio h:= 2o>"2¥ with n=2 and s is the standard

P(X>s x)"
deviation of the Lognormal, here s = / e"z (e°2 - 1)

ol {_
5 Erfc[Log[2.T . ;lo."z x] ]

7z
2 ’
Erfc[ Log[cT\/—\;} _:'.02 x] ]2

The weirdest think is a kink at low o, the "crossover”

2.0x1020
1.5x10%°
1.0x10%°

5.0x10"® J
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A nice equality

The Pearson family is defined for an appropriately scaled
density f satisfying the following differential equation.

flo) = -8t 88y 3

Let m be the mean. Using the identity E(|X — m|) =
2 [ zf(z)dz and integrating by parts,
2 (bo +bim + bzmz)
a; — 2b2

E(X —m|) = - flm) @



Cumulants

* Simply, since

Cumulants order p (n summands) = n cumulants order p (1).
 We match cumulants of Pearson to those of n-summed Lognormal
* Parametrization determines the Pearson “class” (here Pearson |V)

We use cumulants of the n-summed lognormal to match the
parameters.Setting a; = 1, and m = 11’1_;2‘;;2, we get
—12K1K93 + Bk3ko? — 10k Kako + 12k1K32 + Kaky
2 (6!&‘,23 + K4k — 6/&‘,32)

. 31{.32 - 2/1.2!’&4

T —12K93 — 10K4k9 + 12K32°

b — 6&3&22 — 4dK1K4k0 + 6I€1fi32 + K3K4

1= 2 (6!‘523 + SK4Ko — 6!‘&32) ’

apg =

by

1
4 —12/1:23 — 1054’62 -+ 12&%
(—12#.',24 - 6n1n3ng - 45453 -+ 3/{%52

2 2,2
— 2K1K4K + 3KTKS + K1K3Ky)

bo




Finalmente
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Fig. 2. The lognormal case, assuming g = 0. We show K129 for the bounds.
(where the sum stays lognormal) and x5 for the Pearson class,
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1.25
1.5
1.75

2.25
2.5
2.75
3.25
3.5
3.75

Pareto
K2
1.171
1.276
1.35
1.406
1.449
1.483
1.512
1.535
1.555
1.572
1.587
1.6

Pareto
K30
1.113
1.350
1.444
1.516
1.569
1.614
1.644
1.6754
1.695
1.716
1.737
1.7468

TABLE I11
COMPARING PARETO TO STUDENT T

Pareto

K100
1.229

1.369
1.47

1.551
1.612
1.659
1.693
1.719
1.742
1.765
1.778
1.789

Student
K2
1.208
1.353
1.457
1.535
1.594
1.641
1.679
1.71
1.735
1.757
1.775
1.791

Student
K30
1.235
1.391
1.517
1.613
1.684
1.744
1.776
1.809
1.833
1.851
1.870
1.874

Student
K100
1.244
1.413
1.549
1.648
1.718
1.773
1.811
1.841
1.862
1.879
1.891
1.907



Cubic alpha

Let X be a random variable distributed with density p(z):

6v/3

__BV9 e 9
T2 e e o) ®)

p(z) =
Theorem 1. Let Y be a sum of X,,...,X,, n identical

copies of X. Let MD(n) be the mean absolute deviation
from the mean for n summands. The "speed" of convergence

_f..MDn) _ 1\1-3) ...
7"—{7'MD(71')_(§) '}’S'

_ log(n)
log (e"nE_,(n)—1)

Tn (10)

et(—2)
AL

dt.

where E )(.) is the exponential integral E,z = floo
Further, the PDF of ¥ can be written as

enve e%E_n (n-l- -%) +E_, (n = %))
2v/3m

p(y) =
(11)

- - ——
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Doing Statistics Under Fat Tails: The Program

Research Project started in 2015 by Nassim Nicholas Taleb and colleagues

(so far Pasquale Cirillo, Raphael Douady and other members of the Real World Risk Institute)

Background: The technical papers below are part of a systematic approach to uncover mismeasurement of statistical
metrics under fattailedness and propose corrections and alternative tools. Conventional statistics fail to cover fat tails;
physicists who use power laws do not usually produce statistical estimators, leading to a large —and consequential —
gap. It is not just changing the color of the dress (see discussion below).

The initial aim was to establish a network of Bourbaki-style collaborators in a synchronized way working on the gap and
injecting rigor in policy-making and decision-making under fat tails.

Taleb, N.N., "The law of large numbers under fat tails"(in progress). This the central idea; it shows where statistical
inference is BS and explores more rigorous estimation of the mean of the sum of fat-tailed random variables. A YouTube
presentation here at MIT Big Data Luncheon.

Taleb, N.N., "Stochastic Tail Exponent for Asymmetric Power Laws"

Taleb, N.N., "Preasymptotic behavior of subexponential and non-stable powerlaw sums"

Taleb, N.N., "The mathematical foundations of the precautionary principle"(in progress). Actually shows how the
entire structure of probability in the social sciences is messed-up.

The inequality papers (apply to all measures of concentration, not just inequality):
The next two papers apply the idea showing the flaw in using "averages" and "sums" as estimators of inequality

Silent Risk, a
book in
progress
(freely
available PDF,
~450 pages).

N.N. Taleh's
Home Page

Precautionary
Principle Page

Real World
Risk Insiitnte

The fragility
heuristic paper
(with IMF, non
technical)

A Mathematical




Cirillo, P. and Taleb, N.N., 2016, "What are the odds of a thirld world war?", (Significance).

Taleb, N.N., Cirillo and P, Taleb, N.N., 2016,"Expected shortfall estimation for apparently infinite-mean models of
operational risk", forthcmoing, Quantitative Finance.

P-Value Problem

Taleb, N.N., 2016, The meta-distribution of p-values, P-values (although with compact support) are fat-tailed, with effects
on p-hacking.

Option Theory

Taleb, N.N., 2015, Unique Option Pricing Measure with neither Dynamic Hedging nor Complete Markets, European

Financial Management . It proves using measure theory how a distribu- tion with finite first moment can produce a
risk-neutral option price, and why we can dispense with both the dynamic hedging and pricing kernel arguments —
hence price options with fat-tails.

Formalization of the barbell strategy using information theory
We are clueless about downside probability, particularly under fat tails. We look at constructions with severe tail
constraints and compatible with gambler's ruin (a generalization of Kelly's criterion).

Geman, D., Geman, H. and Taleb, N.N., 2015. "Tail risk constraints and maximum entropy". Entropy, 17, pp.1-14.

Dimensionality and Model Error

Taleb, N.N., "Model error and dimensionality". In progress

Undecidability: amply covered in Silent Risk (it is its theme), here is the formalization.

Douady, R. and Taleb, N.N. Statistical Undecidability Under what conditions on the metadistribution of the probability
measure is a statistical formally decidable.

Power laws and stochastic tail Exponents mixtures of power laws.

TBA



